APPROXIMATE SOLUTIONS OF THE WALRASIAN EQUILIBRIUM INEQUALITIES WITH BOUNDED MARGINAL UTILITIES OF INCOME By
نویسنده
چکیده
Recently Cherchye et al. (2011) reformulated the Walrasian equilibrium inequalities, introduced by Brown and Matzkin (1996), as an integer programming problem and proved that solving the Walrasian equilibrium inequalities is NPhard. Brown and Shannon (2002) derived an equivalent system of equilibrium inequalities ,i.e., the dual Walrasian equilibrium inequalities. That is, the Walrasian equilibrium inequalities are solvable iff the dual Walrasian equilibrium inequalities are solvable. We show that solving the dual Walrsian equilibrium inequalities is equivalent to solving a NP-hard minimization problem. Approximation theorems are polynomial time algorithms for computing approximate solutions of NP-hard minimization problems. The primary contribution of this paper is an approximation theorem for the equivalent NP-hard minimization problem. In this theorem, we derive explicit bounds, where the degree of approximation is determined by observable market data.
منابع مشابه
APPROXIMATE SOLUTIONS OF THE WALRASIAN AND GORMAN POLAR FORM EQUILIBRIUM INEQUALITIES By
Recently Cherchye et al. (2011) reformulated the Walrasian equilibrium inequalities, introduced by Brown and Matzkin (1996), as an integer programming problem and proved that solving the Walrasian equilibrium inequalities is NP-hard. Following Brown and Shannon (2000), we reformulate the Walrasian equilibrium inequalities as the dual Walrasian equilibrium inequalities. Brown and Shannon proved ...
متن کاملTwo Algorithms for Solving the Walrasian Equilibrium Inequalities
We propose two algorithms for deciding if the Walrasian equilibrium inequalities are solvable. These algorithms may serve as nonparametric tests for multiple calibration of applied general equilibrium models or they can be used to compute counterfactual equilibria in applied general equilibrium models defined by the Walrasian equilibrium inequalities.
متن کاملDecision Methods for Solving Systems of Walrasian Inequalities
We propose two algorithms for deciding if systems of Walrasian inequalities are solvable. These algorithms may serve as nonparametric tests for multiple calibration of applied general equilibrium models or they can be used to compute counterfactual equilibria in applied general equilibrium models defined by systems of Walrasian inequalities.
متن کاملExistence and Uniqueness Results for a Nonstandard Variational-Hemivariational Inequalities with Application
This paper aims at establishing the existence and uniqueness of solutions for a nonstandard variational-hemivariational inequality. The solutions of this inequality are discussed in a subset $K$ of a reflexive Banach space $X$. Firstly, we prove the existence of solutions in the case of bounded closed and convex subsets. Secondly, we also prove the case when $K$ is compact convex subsets. Fina...
متن کاملTo Save Or Not To Save: The Fisher Game
We examine the Fisher market model when buyers, as well as sellers, have an intrinsic value for money. We show that when the buyers have oligopsonistic power they are highly incentivized to act strategically with their monetary reports, as their potential gains are unbounded. This is in contrast to the bounded gains that have been shown when agents strategically report utilities [5]. Our main f...
متن کامل